Package: glm.predict 4.3-1.9000

glm.predict: Predicted Values and Discrete Changes for Regression Models

Functions to calculate predicted values and the difference between the two cases with confidence interval for lm() [linear model], glm() [generalized linear model], glm.nb() [negative binomial model], polr() [ordinal logistic model], vglm() [generalized ordinal logistic model], multinom() [multinomial model], tobit() [tobit model], svyglm() [survey-weighted generalised linear models] and lmer() [linear multilevel models] using Monte Carlo simulations or bootstrap. Reference: Bennet A. Zelner (2009) <doi:10.1002/smj.783>.

Authors:Benjamin E. Schlegel [aut,cre]

glm.predict_4.3-1.9000.tar.gz
glm.predict_4.3-1.9000.zip(r-4.5)glm.predict_4.3-1.9000.zip(r-4.4)glm.predict_4.3-1.9000.zip(r-4.3)
glm.predict_4.3-1.9000.tgz(r-4.4-any)glm.predict_4.3-1.9000.tgz(r-4.3-any)
glm.predict_4.3-1.9000.tar.gz(r-4.5-noble)glm.predict_4.3-1.9000.tar.gz(r-4.4-noble)
glm.predict_4.3-1.9000.tgz(r-4.4-emscripten)glm.predict_4.3-1.9000.tgz(r-4.3-emscripten)
glm.predict.pdf |glm.predict.html
glm.predict/json (API)
NEWS

# Install 'glm.predict' in R:
install.packages('glm.predict', repos = c('https://benjaminschlegel.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/benjaminschlegel/glm.predict/issues

Datasets:
  • selects2015 - Swiss Electoral Studies (Selects) 2015 - Post-electoral study

On CRAN:

5.27 score 1 stars 53 scripts 761 downloads 19 exports 74 dependencies

Last updated 3 months agofrom:81904a7a01. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winNOTENov 21 2024
R-4.3-macNOTENov 21 2024

Exports:basepredictbasepredict.glmbasepredict.lmbasepredict.lmerModbasepredict.mlogitbasepredict.multinombasepredict.polrbasepredict.tobitbasepredict.vglmdcdc.glmdc.lmdc.lmerModdc.mlogitdc.multinomdc.polrdc.tobitdc.vglmpredicts

Dependencies:abindAERbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DBIDerivdfidxdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamitoolsmlogitmodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackrlangsandwichscalesSparseMstatmodstringistringrsurveysurvivaltibbletidyrtidyselectutf8vctrsVGAMviridisLitewithrzoo

Introduction to glm.predict

Rendered fromglm.predict.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-01-15
Started: 2024-01-15